Application of the Method of Fundamental Solutions with the Laplace Transformation for the Inverse Transient Heat Source Problem
نویسندگان
چکیده
The paper deals with the inverse determination of heat source in an unsteady heat conduction problem. The governing equation for the unsteady Fourier heat conduction in 2D region with unknown internal heat source is known as the inverse boundary-initial-value problem. The identification of strength of the heat source is achieved by using the boundary condition, initial condition and a known value of temperature in chosen points placed inside the domain. For the solution of the inverse problem of determination of the heat source, the Laplace transformation with the method of fundamental solution and radial basis functions is proposed. Due to ill conditioning of the inverse transient heat conduction problem, the Tikhonov regularization method based on SVD and L-curve criterion was used. As the test problems, the 2D inverse boundary-initial-value problems (2D IBIVP) in region Ω with known analytical solutions are considered.
منابع مشابه
Non-Fourier heat conduction equation in a sphere; comparison of variational method and inverse Laplace transformation with exact solution
Small scale thermal devices, such as micro heater, have led researchers to consider more accurate models of heat in thermal systems. Moreover, biological applications of heat transfer such as simulation of temperature field in laser surgery is another pathway which urges us to re-examine thermal systems with modern ones. Non-Fourier heat transfer overcomes some shortcomings of Fourier heat tran...
متن کاملThe method of fundamental solutions for transient heat conduction in functionally graded materials: some special cases
In this paper, the Method of Fundamental Solutions (MFS) is extended to solve some special cases of the problem of transient heat conduction in functionally graded materials. First, the problem is transformed to a heat equation with constant coefficients using a suitable new transformation and then the MFS together with the Tikhonov regularization method is used to solve the resulting equation.
متن کاملEstimation of the Strength of the Time-dependent Heat Source using Temperature Distribution at a Point in a Three Layer System
In this paper, the conjugate gradient method coupled with adjoint problem is used in order to solve the inverse heat conduction problem and estimation of the strength of the time- dependent heat source using the temperature distribution at a point in a three layer system. Also, the effect of noisy data on final solution is studied. The numerical solution of the governing equations is obtained b...
متن کاملDetermination of a Source Term in an Inverse Heat Conduction Problem by Radial Basis Functions
In this paper, we propose a technique for determining a source term in an inverse heat conduction problem (IHCP) using Radial Basis Functions (RBFs). Because of being very suitable instruments, the RBFs have been applied for solving Partial Dierential Equations (PDEs) by some researchers. In the current study, a stable meshless method will be pro- posed for solving an (I...
متن کاملAnalytical D’Alembert Series Solution for Multi-Layered One-Dimensional Elastic Wave Propagation with the Use of General Dirichlet Series
A general initial-boundary value problem of one-dimensional transient wave propagation in a multi-layered elastic medium due to arbitrary boundary or interface excitations (either prescribed tractions or displacements) is considered. Laplace transformation technique is utilised and the Laplace transform inversion is facilitated via an unconventional method, where the expansion of complex-valued...
متن کامل